
 1 Copyright © 2011 by ASME 

Proceedings of the 35
th

 Mechanisms and Robotics Conference 

MECH35 

August 28-31, 2011, Washington, DC, USA 

 
 

DETC2011-47256 
 
 

MODELING AND CONTROL OF A COMPLIANTLY ENGINEERED ANTHROPOMIMETIC 
ROBOT IN CONTACT TASKS  

 

 

 

 

Veljko Potkonjak 
Faculty of Electrical Engineering, University of 
Belgrade, Bulevar kralja Aleksandra 73, 11000 

Belgrade, Serbia (corresponding author, tel: +381 
11 3218318; e-mail: potkonjak@yahoo.com) 

Kosta Jovanovic 
Faculty of Electrical Engineering, University of 
11000 Belgrade, Bulevar kralja Aleksandra 73, 

Belgrade, Serbia (e-mail: kostaj@etf.rs) 

 

 

Bratislav Svetozarevic 
Automatic Control Laboratory, 

Swiss Federal Institute of 
Technology-ETH, Physiksrasse 

3, 8092 Zurich, Switzerland  
(e-mail: 

bratislavs@control.ee.ethz.ch) 

Owen Holland 
School of Informatics, University 
of Sussex, Brighton BN1 9 QJ, 

Falmer, United Kingdom  
(e-mail: 

owen.holland@gmail.com) 

Dusan Mikicic 
Faculty of Electrical 

Engineering, University of 11000 
Belgrade, Bulevar kralja 

Aleksandra 73, Belgrade, Serbia 
(e-mail: mikicic@etf.rs) 

 

 

 

ABSTRACT 
 

This paper attempts to develop a dynamic model and 

design a controller for a fully anthropomorphic, compliantly 

driven robot. To imitate muscles, the robot’s joints are actuated 

by DC motors antagonistically coupled through tendons. To 

ensure safe interaction with humans in a human-centered 

environment, the robot exploits passive mechanical 

compliance, in the form of elastic springs in the tendons. To 

enable simulation, the paper first derives a mathematical model 

of the robot’s dynamics, starting from the “Flier” approach. The 

control of the antagonistic drives is based on a biologically 

inspired puller-and-follower concept where at any instant the 

puller is responsible for the joint motion while the follower 

keeps the inactive tendon from slackening. In designing the 

controller, it was first necessary to use the advanced theory of 

nonlinear control for dealing with individual joints, and then to 

apply the theory of robustness in order to extend control to the 

multi-jointed robot body. 

 

 

INTRODUCTION 
 

Anthropomimetics refers to a new kind of robotics which 

copies the human body as faithfully as possible with the aim of 

achieving a level of performances (diversity of motions, 

maneuverability, etc.) comparable with that of a human. This 

amounts to a return to the origins of robotic science – creating 

an artificial man [1]. This paper attempts to develop an 

appropriate dynamic model and then to design a controller for 

an existing anthropomimetic humanoid – ECCEROBOT
1
.  

ECCEROBOT has joints driven by antagonistically 

coupled DC motors. The two joint motors, the agonist and 

antagonist, working through tendons, mimic muscles.  Since the 

robot is expected to work in a human centered environment and 

in the presence of humans, emphasis is given to safe interaction 

with the surroundings. To achieve this safety, the robot features 

passive mechanical compliance, which is implemented by 

placing elastic springs in the tendons. 

                                                           
1 EU FP7 project: „Embodied Cognition in a Compliantly Engineered Robot“ 
(www.eccerobot.org) 
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 The paper begins by describing the robot’s structure and in 

particular the proposed mechanical models of the joints. Then it 

develops a complete mathematical model of the system 

dynamics. The modeling starts from a preexisting abstract 

model of a humanoid, called the Flier. It relates joint torques 

with joint motions and contacts with the environment, for any 

arbitrary robot task. Torques are produced by compliant 

agonist-antagonist (AA) drives. A complete dynamic model is 

obtained, relating the joint and motor motions and the contacts 

with the environment to the input control voltages. Controlling 

joints driven by AA pairs in the presence of compliance is a 

challenging problem. We approach the control problem by first 

analyzing a single-joint system. The main result is a new 

biologically-inspired and energy efficient puller-follower 

concept which enables the control of joint motions while at the 

same time preventing the unloaded tendon from slackening. 

Later we extend the treatment to a spatial multi-jointed robot, 

introducing on-line gravity compensation and robustness to 

compensate for the effects of variable joint inertia and dynamic 

coupling between joints. While in previous research the non-

constrained robot motion was considered, the current work 

includes the solution of contact tasks. 

 

ANTHROPOMIMETIC ROBOT STRUCTURE 
 

The ECCEROBOT project is attempting to create a robot 

very similar in function to the human body (Fig. 1.a), by 

replicating its skeleton and its antagonistic tendon drives. With 

its compliant human-like shape, such a mechanism is able to 

interact with humans and with its environment in an inherently 

safe way. 

 

 
 

 Fig. 1. (a) REAL ROBOT STRUCTURE – ECCEROBOT 
(b) ROBOT MODEL STRUCTURE 

 

The mechanical complexity and human-like nature of 

ECCEROBOT is constantly under development. This paper 

describes its structure using the mechanical model shown in 

Fig. 1.b [2]. Each joint rotation is driven by two motors 

working in AA mode. For the elbow rotation, the mechanical 

model of Fig. 2.a is adopted (the “triangular model”). Motor 

“a” plays the role of the biceps (or brachialis) while motor “b” 

mimics the triceps. For the shoulder rotations and other 

rotations in the robot’s body, the mechanical model of Fig. 2.b 

is  used (the “circular model”).  

 

 
 

Fig. 2. (a) ELBOW ROTATION WITH AA DRIVES – TRIANGULAR 
MODEL  

(b) SHOULDER ROTATION AA DRIVES – CIRCULAR MODEL 

 

Single-joint drive model 

 

The geometry of a triangular joint (Fig. 2.a) is defined by 

 

 

 𝜉𝑎 𝑞 =  𝑙𝑎1
2 + 𝑙𝑎2

2 + 2𝑙𝑎1𝑙𝑎2cos(𝑞)  

𝜉𝑏 𝑞 =  𝑙𝑏1
2 + 𝑙𝑏2

2 − 2𝑙𝑏1𝑙𝑏2cos(𝑞)             (1) 

 

𝜑𝑎 = arcsin(
𝑙𝑎1sin(𝑞)

 𝜉𝑎 𝑞 
) 

𝜑𝑏 = arcsin(
𝑙𝑏1sin (𝑞)

 𝜉𝑏  𝑞 
)                             (2) 

 

 

and for a circular model (Fig. 2.b) it is: 

 

 

 𝜉𝑎 𝑞 =  
𝜋

2
+ 𝛼 − 𝑞 𝑙𝑟 +  𝑙𝑝

2 − 𝑙𝑟
2   

𝜉𝑏 𝑞 =  
𝜋

2
+ 𝛼 + 𝑞 𝑙𝑟 +   𝑙𝑝

2 − 𝑙𝑟
2             (3) 

  

 

  The elastic (tension) forces in the tendons (cords) have 

two components each, one proportional (pure elastic 

deformation) and the other differential (damping). The 

relationships that describe this are: 

 

 

𝐹𝑎 = 𝑘𝑎Δ𝑙𝑎 + 𝑑𝑎Δ𝑙𝑎  

𝐹𝑏 = 𝑘𝑏Δ𝑙𝑏 + 𝑑𝑏Δ𝑙𝑏                          (4) 
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where Δ𝑙𝑎  and Δ𝑙𝑏  are the linear deformations (cord 

extensions) equal to: 

 

 

Δ𝑙𝑎 =  𝜉𝑎 𝑞 − 𝜉0
𝑎 + 𝑟𝑎𝜃𝑟𝑎  

Δ𝑙𝑏 =  𝜉𝑏 𝑞 − 𝜉0
𝑏 − 𝑟𝑏𝜃𝑟𝑏                      (5) 

 

 

where 𝜉0
𝑎(𝑏)

 is the initial length of cord “a” (“b”). 

 The equations of DC motor dynamics (6) and the 

relationships for the gear-boxes and pulleys (7) apply to both 

agonist “a” and antagonist “b” in the same form, therefore, the 

superscripts a and b are omitted: 

 

 

𝐶𝑀𝑖 = 𝐼𝑟𝑜𝑡 𝜃 + 𝐵𝜃 + 𝑀;   𝑢 = 𝑅𝑖 + 𝐶𝐸𝜃             (6) 

𝜃𝑟 =
𝜃

𝑁
;   𝑀𝑟 = 𝜇𝑁𝑀;   𝑀𝑟 = 𝐹𝑟                  (7) 

 

        

where 𝐶𝑀  is the torque constant, 𝐼𝑟𝑜𝑡  is the rotor moment of 

inertia, 𝐵 is the viscous friction coefficient, 𝑀 is the motor 

output torque, 𝑢 is the input voltage, 𝑅 is the armature 

resistance, 𝑖 is the motor current, 𝐶𝐸  is the coefficient of back 

e.m.f., 𝜃 is the angle of motor shaft rotation, 𝑁 is the gear-box 

ratio, 𝜇 is the gear-box efficiency coefficient, 𝑟 is the reel 

radius, 𝜃𝑟  is the reel angle (gear-box output angle), 𝑀𝑟  is the 

gear-box output torque and 𝐹 is the tension force in the cord 

(tendon force). 

The tendon forces create a torque 𝜏 about the joint axis: 

expression (8) holds for the triangular and (9) for the circular 

joint: 

 

 

𝜏 = 𝐹𝑎 𝑙𝑎2 sin 𝜑𝑎 − 𝐹𝑏 𝑙𝑏2 sin 𝜑𝑏                 (8) 

𝜏 = 𝐹𝑎 𝑙𝑝 sin 𝛼 − 𝐹𝑏 𝑙𝑝 sin 𝛼                     (9) 

 

 

If the system consisted of one joint only, this torque would 

move one link (see Fig. 2.), solving its inertia (𝐼 𝑞 ) and the 

gravity load (𝑀𝑔): 

 

𝜏 = 𝐼 𝑞 + 𝑀𝑔(𝑞)                             (10) 

 

 

where  𝐼  is the constant moment of inertia and the gravity term 

depends on the position q. 

With the multi-link system, the drive-to-motion relation is 

much more complex. 

 

The full multi-joint multi-link model 

 

Here, we derive the dynamic model of the complete body 

mechanism and integrate it with the joint-drive models defined 

by (1)-(9). 

We start from the “classical” dynamic model that considers 

the joint torques as the controls and relates them to joint 

motions. The concept of the Flier approach, derived for 

humanoid robots, is then applied [3,4]. It originally dealt with a 

full humanoid (pelvis, torso, arms, legs, head).  ECCEROBOT 

applies only a part of it to the upper-body robot of Fig. 1. The 

idea of the Flier approach is to consider the humanoid freely 

flying in space and then to introduce contacts with 

environmental objects in order to model the imposed motion 

task. This applies to any motion task: walking and running, 

manipulation, sporting motions, etc. When applied to the 

ECCEROBOT structure (Fig. 1.b), the system configuration 

becomes as shown in Fig. 3. 

Following the Flier concept, we start the dynamic analysis 

from the free-flying model. If robot has n single-rotation joints 

(n=20 for the configuration under investigation), then its 

position is defined by a vector of dimension N=6+n: 

 

 

𝐐𝑁x1 =  𝑥, 𝑦, 𝑧, δ, φ, ψ, 𝑞1 , … , 𝑞𝑛 = (𝐗6x1 , 𝐪𝑛x1)    (11) 

 

 

where 𝐗 = (𝑥, 𝑦, 𝑧, δ, φ, ψ) defines the absolute position of  the 

“main body”, the pelvis in this case, while 𝐪 = (𝑞1, … , 𝑞𝑛) 

represent joint angles. 

 

 
Fig. 3. THE SYSTEM CONFIGURATION 

 

The dynamic model has the matrix form: 
 

 

𝐇 𝐐  𝐐  +  𝐡 𝐐, 𝐐  = 𝐓                        (12) 

 

 

where 𝐓𝑁x1 = (0,… ,0, 𝜏1 , … , 𝜏𝑛) = (𝟎6x1,𝛕𝑛x1) is the 

generalized  vector of drives, 𝛕 = (𝜏1 , … , 𝜏𝑛)  represents the 
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joint torques, HNxN is the inertial matrix, and hNx1 takes care of 

gravity, centrifugal, and Coriolis’ effects.  

The contacts (one or more) with the environment are now 

introduced. Contact refers to a particular robot link and restricts 

the relative motion of that link with respect to the relevant 

environmental object. If there are m restricted directions, the 

contact can be expressed as:  

     

 

𝐬𝐜(𝐐, 𝐐b) = 𝟎                                (13) 

 

 

where s
c
mx1 is the vector of relative link-to-object position, 

which depends on the robot position Q (of dimension N) and 

the object position 𝐐b  (of dimension k). By derivation: 

 

 

𝐬 𝐜 = 𝐉(𝐐, 𝐐b )𝐐 + 𝐉𝐛(𝐐, 𝐐b)𝐐 𝐛 = 𝟎 

𝐬 𝐜 = 𝐉(𝐐, 𝐐b)𝐐 + 𝐉𝐛(𝐐, 𝐐b)𝐐 𝐛 + 𝐀 𝐐,𝐐, 𝐐𝐛, 𝐐 b = 𝟎  (14) 

 

 

where 𝐉 =
𝛛𝐬𝐜

𝛛𝐐
 and 𝐉𝐛 =

𝛛𝐬𝐜

𝛛𝐐𝐛
 are Jacobeans of dimensions 𝑚x𝑁 

and 𝑚x𝑘 respectively, and A contains second partial 

derivatives.  

Contact introduces reaction forces and moments. Reactions 

appear along the restricted directions s
c
. Let 𝐑𝑚x1 be the vector 

of reactions. 

The dynamics of the contact motion is now described by 

the model: 

 

 

𝐇 𝐐  𝐐  +  𝐡 𝐐, 𝐐  = 𝐓 + 𝐉𝐓 𝐐, 𝐐𝐛 𝐑          (15a) 

𝐬 𝐜 = 𝐉(𝐐, 𝐐b)𝐐 + 𝐉𝐛(𝐐, 𝐐b)𝐐 𝐛 + 𝐀 𝐐,𝐐, 𝐐𝐛, 𝐐 b = 𝟎(15b) 

𝐖 𝐐𝐛  𝐐 b  +  𝐰 𝐐𝐛, 𝐐 b = 𝐓𝐛 − 𝐉𝐛
𝐓 𝐐, 𝐐𝐛 𝐑    (15c) 

 

 

The model unites the robot dynamics (N-dimensional 

submodel (15a)), the object dynamics (k-dimensional  

submodel (15c) with model matrices Wkxk and wkx1), and the 

geometry of contact (m-dimensional  subsystem (15b)). It 

relates the driving torques (T for the robot and Tb for the 

object) to the motion (Q and Qb for the robot and the object 

respectively) and the contact reactions (R). If the behavior of 

the contacted object is robust to the robot actions (e.g. if the 

object is massive, like the ground), then the robot dynamics can 

be decoupled and the (15a) and (15b)  can be solved 

considering the object motion to be zero. 

Bearing in mind the previously derived equations of the 

joint drives (relations (8), (9), and (1)-(5)) it is clear that each 

joint torque can be written as a function of the joint and motor 

positions (𝑞, 𝜃𝑎 , 𝜃𝑏) and velocities (𝑞 , 𝜃 𝑎 , 𝜃 𝑏): 𝜏𝑗 =

𝜏𝑗 (𝑞𝑗 , 𝑞 𝑗 , 𝜃𝑎𝑗 , 𝜃 𝑎𝑗 , 𝜃𝑏𝑗 , 𝜃 𝑏𝑗  ) and so in matrix form 

 

 

𝐓𝑁x1 = 𝐓 𝐪, 𝐪 , 𝛉𝐚, 𝛉 𝐚, 𝛉𝐛, 𝛉 𝐛                  (16) 

 

 

where 𝐪, 𝛉𝐚, 𝛉𝐛  are proper position vectors (for joints and 

motors). Note that the compliance in the tendons makes the 

motor angles independent of joint position and thus increases 

the dimensionality of the problem. 

Substituting T in (15a), one obtains: 

 

 

𝐇 𝐐  𝐐  +  𝐡  𝐐, 𝐐 , 𝛉𝐚, 𝛉 𝐚, 𝛉𝐛, 𝛉 𝐛 = 𝐉𝐓 𝐐, 𝐐𝐛 𝐑    (12) 

 

where 𝐡 𝑁x1 𝐐, 𝐐 , 𝛉𝐚, 𝛉 𝐚, 𝛉𝐛, 𝛉 𝐛 = 𝐡𝑁x1 𝐐, 𝐐  −

𝐓𝑁x1 𝐐, 𝐐 , 𝛉𝐚, 𝛉 𝐚, 𝛉𝐛, 𝛉 𝐛 . This relation replaces (15a) in model 

(15). 

The dynamics of the motors ((6)-(7) along with (1)-(5), 

applied to each joint 𝑗 = 1, … , 𝑛) can be rewritten to give an 

additional 2n differential equations in the following matrix 2n-

dimensional form: 

 

 

𝐇  𝛉 + 𝐡  𝐐, 𝐐 , 𝛉𝐚, 𝛉 𝐚, 𝛉𝐛, 𝛉 𝐛 =  𝐂 𝐮              (18) 

 

 

where 𝛉 = (𝛉𝐚, 𝛉𝐛) and u2nx1 is the vector of input control 

voltages. Model matrices 𝐇  and  𝐡  are derived starting from 

(1)-(7).                                                     

Thus, model (15), with (17) substituted, describes the 

contact dynamics of the robot body and (18) describes the 

dynamics of the robot motors. We now join these relationships, 

obtaining a set of N+m+k+2n scalar equations: 

 

 

𝐇 𝐐  𝐐  +  𝐡  𝐐, 𝐐 , 𝛉𝐚, 𝛉 𝐚, 𝛉𝐛, 𝛉 𝐛 = 𝐉𝐓 𝐐, 𝐐𝐛 𝐑   (19a) 

𝐬 𝐜 = 𝐉(𝐐, 𝐐b)𝐐 + 𝐉𝐛(𝐐, 𝐐b)𝐐 𝐛 + 𝐀 𝐐,𝐐, 𝐐𝐛, 𝐐 b = 𝟎(19b) 

𝐖 𝐐𝐛  𝐐 b +  𝐰 𝐐𝐛, 𝐐 b = 𝐓𝐛 − 𝐉𝐛
𝐓 𝐐, 𝐐𝐛 𝐑    (19c) 

 𝐇  𝛉 + 𝐡  𝐐, 𝐐 , 𝛉𝐚, 𝛉 𝐚, 𝛉𝐛, 𝛉 𝐛 =  𝐂 𝐮           (19d) 

 

If control u is given, system (19) can be solved for 

N+2n+k+m unknowns: the robot motion QNx1, the motor angles 

(θ
a
, θ

b
)2nx1, the object motion Qkx1, and the contact reactions 

Rmx1, thus providing a simulation. 

 

Impact 

 

Any contact can be regarded as consisting of three phases: 

the approach, the impact, and regular contact motion. While the 

approach has been described by the Flier model (12), and the 

regular contact motion by model (19), the impact needs 

additional explanation. Although the original Flier concept 

allows the analysis of rigid vs. soft, and instantaneous vs. 
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durable contacts, we here restrict our consideration to the 

infinitely short impact that happens when two rigid bodies 

establish a contact which then lasts for some finite time. Such 

an impact results in infinitely high reaction forces R but due to 

the infinitely short time Δt the momentum RΔt is not infinite. 

The momentum and the resulting change in system velocities 

can be calculated from the impact model. The impact model is 

obtained if the contact model is integrated over the impact 

period ∆𝑡 = (𝑡 ′ , 𝑡") → 0. Integration yields: 

 

 

𝐇 𝐐 Δ𝐐  = 𝐉𝐓 𝐐, 𝐐𝐛 𝐑Δ𝑡                    (20a) 

𝐉(𝐐, 𝐐b )Δ𝐐 + 𝐉𝐛(𝐐, 𝐐b)Δ𝐐 𝐛 = 𝐬 𝐜(t′)           (20b) 

𝐖 𝐐𝐛 Δ𝐐 𝐛  = −𝐉𝐛
𝐓 𝐐, 𝐐𝐛 𝐑Δ𝑡                (20c) 

𝐇  ∆𝛉 =  𝟎                                 (20d) 

 

 

The impact model can then be solved for the change in 

velocities: ∆𝐐 , ∆𝐐 𝐛, ∆𝛉  and the impact momentum 𝐑∆𝑡. 
In this paper the robot will establish two contacts with its 

environment. One contact is between the pelvis and the ground, 

and the other results from catching a ball (a hand-ball contact). 

 

CONTROL SYNTHESIS FOR AN ISOLATED JOINT 
 

In this Section we propose a new control approach for an 

electrical AA drive and present an application of this approach 

to the joints shown in Fig. 2.a and Fig. 2.b. 

The main problem of controlling an electrical AA drive 

lies in the antagonistic drive’s redundancy. One motor, the 

agonist, initiates the action, while the other, the antagonist, 

opposes it. In order to achieve a desired joint motion, the 

motors should be driven simultaneously, in a coordinated way. 

We also have to consider the tendons coupling  the motors to 

the joint. This tendon coupling enforces unidirectional power 

transmission and, without the correct control, the tendons can 

slacken, leading to an undesirable backlash in the torque 

transmission. These two problems were initially addressed in 

[5,6] and several control strategies were proposed in [6]. 

Further analysis of this type of mechanism was presented in [7]. 

Biologically-inspired approaches were developed in [8,9]. 

Since all the proposed concepts used linearly coupled drives, 

they were inapplicable to our nonlinearly coupled system. In 

order to deal with this complex control problem, we developed 

a completely new biologically-inspired and energy efficient 

approach – the puller-follower concept [2,10]. As our main 

reference for human physiology we used [11]. We now briefly 

present this new approach. Due to lack of space, the energy 

efficiency will not be proved exactly. This energy statement 

will hopefully be acceptable after describing the concept which 

avoids unnecessary high tensions in tendons. 

Let us first describe our control concept by starting with 

the main control requirements for an isolated joint. A 

generalization to a multi-joint multi-link system will then be 

made. The basic control requirement is the control of the joint 

position. One motor, the puller, takes the main responsibility 

for this task. In order to prevent slackening of the other tendon, 

a second control task – maintaining an appropriate tension in 

the tendon – is added. This additional task is mainly assigned to 

the follower motor. By “appropriate tension” we mean a tension 

above some minimal value that guarantees that a tendon will 

remain stretched during joint motion. This prescribed minimum 

will be called the reference tension force. Accordingly, in each 

joint we will have two references: the reference position (i.e. 

the reference motion trajectory) and the reference tension force. 

The joint motors exchange roles when the motion requires it, 

usually when acceleration turns to deceleration. This exchange 

of roles is called switching.  

We now design the joint control based on the puller-

follower concept. The state-space coordinates are adopted as 

follows: motor angles and angular velocities, and joint angle 

and velocity: 𝑥1 = 𝜃𝑎 , 𝑥2 = 𝜃 𝑎 , 𝑥3 = 𝜃𝑏 , 𝑥4 = 𝜃 𝑏 , 
𝑥5 = 𝑞,  𝑥6 = 𝑞 . Starting from the equations of motors and 

tendon transmission, (1)-(10), applied to an isolated joint 

moving in horizontal plane, one derives the canonical model: 

 

 

𝑥 1 = 𝑥2 

𝑥 2 = 𝑥2𝑝 𝑥1, 𝑥2 , 𝑥5 , 𝑥6 + (𝐶𝑀𝑎 𝑅𝑎𝐼𝑟𝑜𝑡  𝑎 ) 𝑢𝑎  

𝑥 3 = 𝑥4 

𝑥 4 = 𝑥4𝑝 𝑥3, 𝑥4 , 𝑥5 , 𝑥6 +  𝐶𝑀𝑏 𝑅𝑏𝐼𝑟𝑜𝑡  𝑏   𝑢𝑏  

𝑥 5 = 𝑥6 

𝑥 6 = 𝑥6𝑝 𝑥1, 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6              (21) 

 

 

Where the functions of the state 𝑥2𝑝 , 𝑥4𝑝 , and 𝑥6𝑝  are nonlinear 

(for a triangular joint) or linear (for a circular joint). For a 

triangular model the functions are: 

 

 

𝑥2𝑝 𝑥1 , 𝑥2 , 𝑥5, 𝑥6 = 

−
𝑟𝑎

2
𝑘𝑎

𝜇𝑎𝑁𝑎2
𝐼𝑟𝑜𝑡  𝑎

𝑥1 −
1

𝐼𝑟𝑜𝑡  𝑎
 
𝑟𝑎

2
𝑑𝑎

𝜇𝑎𝑁𝑎2 +  𝐵𝑎 +
𝐶𝑀𝑎𝐶𝐸𝑎

𝑅𝑎
  𝑥2 

+
𝑟𝑎

𝜇𝑎𝑁𝑎 𝐼𝑟𝑜𝑡  𝑎  −𝑘
𝑎𝜉𝑎 𝑥5 +

𝑑𝑎 𝑙𝑎1𝑙𝑎2  sin (𝑥5)

𝜉𝑎  𝑥5 
𝑥6+𝑘𝑎𝜉0

𝑎   (22) 

 

𝑥4𝑝 𝑥3 , 𝑥4 , 𝑥5, 𝑥6 = 

−
𝑟𝑏

2
𝑘𝑏

𝜇𝑏𝑁𝑏
2
𝐼𝑟𝑜𝑡  𝑏

𝑥3 −
1

𝐼𝑟𝑜𝑡  𝑏
 
𝑟𝑏

2
𝑑𝑏

𝜇𝑏𝑁𝑏
2 +  𝐵𝑏 +

𝐶𝑀𝑏𝐶𝐸𝑏

𝑅𝑏
  𝑥4 

+
𝑟𝑏

𝜇 𝑏𝑁𝑏 𝐼𝑟𝑜𝑡  𝑏  𝑘
𝑏𝜉𝑏 𝑥5 +

𝑑𝑏 𝑙𝑏1𝑙𝑏2  sin (𝑥5)

𝜉𝑏  𝑥5 
𝑥6 − 𝑘

𝑏𝜉0
𝑏    (23) 

 

𝑥6𝑝 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4, 𝑥5 , 𝑥6 = 
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𝐶𝑆𝑎 𝑥5 𝑟
𝑎𝑘𝑎

𝑁𝑎𝐼
𝑥1 +

𝐶𝑆𝑎 𝑥5 𝑟
𝑎𝑑𝑎

𝑁𝑎 𝐼
𝑥2 +

𝐶𝑆𝑏 𝑥5 𝑟
𝑏𝑘𝑏

𝑁𝑏𝐼
𝑥3 

+
𝐶𝑆𝑏 𝑥5 𝑟

𝑏𝑑𝑏

𝑁𝑏 𝐼
𝑥4 +

1

𝐼
𝐶𝑆𝑎 𝑥5 𝑘

𝑎𝜉𝑎 𝑥5 −
1

𝐼
𝐶𝑆𝑏 𝑥5 𝑘

𝑏𝜉𝑏 𝑥5  

−
1

𝐼
𝐶𝑆𝑎 𝑥5 𝑘

𝑎𝜉0
𝑎 +

1

𝐼
𝐶𝑆𝑏 𝑥5 𝑘

𝑏𝜉0
𝑏  

−
1

𝐼
 
𝐶𝑆𝑎  𝑥5 𝑑

𝑎 𝑙𝑎1𝑙𝑎2

𝜉𝑎  𝑥5 
+

𝐶𝑆𝑏  𝑥5 𝑑
𝑏 𝑙𝑏1𝑙𝑏2

𝜉𝑏 𝑥5 
 𝑠𝑖𝑛𝑥5 ∙ 𝑥6       (24) 

 

 

where 𝐼 is the moment of inertia of the link, and  𝐶𝑆𝑎 𝑥5  and 

𝐶𝑆𝑏 𝑥5  are functions introduced to simplify the above 

expression; they are defined as: 

 

 

𝐶𝑆𝑎 𝑥5 =  
𝑙𝑎1𝑙𝑎2 sin 𝑥5

𝜉𝑎  𝑥5 
,  𝐶𝑆𝑏 𝑥5 =  

𝑙𝑏1𝑙𝑏2 sin 𝑥5

𝜉𝑏 𝑥5 
        (25) 

 

 

For the circular model, it holds that: 

 

 

𝑥2𝑝 𝑥1 , 𝑥2 , 𝑥5 , 𝑥6 = 

−
𝑟𝑎

2
𝑘𝑎

𝜇𝑎𝑁𝑎2
𝐼𝑟𝑜𝑡  𝑎

𝑥1 −
1

𝐼𝑟𝑜𝑡  𝑎
 
𝑟𝑎

2
𝑑𝑎

𝜇𝑎𝑁𝑎2 +  𝐵𝑎 +
𝐶𝑀𝑎𝐶𝐸𝑎

𝑅𝑎
  𝑥2 

−
𝑟𝑎𝑘𝑎

𝜇𝑎𝑁𝑎 𝐼𝑟𝑜𝑡  𝑎
 𝜉𝑎 𝑥5 − 𝜉0

𝑎 +
𝑟𝑎𝑑𝑎 𝑙𝑟

𝜇𝑎𝑁𝑎 𝐼𝑟𝑜𝑡  𝑎 𝑥6           (26) 

 

𝑥4𝑝 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6 = 

−
𝑟𝑏

2
𝑘𝑏

𝜇𝑏𝑁𝑏
2
𝐼𝑟𝑜𝑡  𝑏

𝑥3 −
1

𝐼𝑟𝑜𝑡  𝑏
 
𝑟𝑏

2
𝑑𝑏

𝜇𝑏𝑁𝑏
2 +  𝐵𝑏 +

𝐶𝑀𝑏𝐶𝐸𝑏

𝑅𝑏
  𝑥4 

+
𝑟𝑏𝑘𝑏

𝜇 𝑏𝑁𝑏 𝐼𝑟𝑜𝑡  𝑏
 𝜉𝑏 𝑥5 − 𝜉0

𝑏 +
𝑟𝑏𝑑𝑏 𝑙𝑟

𝜇 𝑏𝑁𝑏 𝐼𝑟𝑜𝑡  𝑏 𝑥6           (27) 

 

𝑥6𝑝 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4, 𝑥5 , 𝑥6 = 

𝑙𝑟𝑟
𝑎𝑘𝑎

𝑁𝑎 𝐼
𝑥1 +

𝑙𝑟𝑟
𝑎𝑑𝑎

𝑁𝑎 𝐼
𝑥2 +

𝑙𝑟𝑟
𝑏𝑘𝑏

𝑁𝑏 𝐼
𝑥3 +

𝑙𝑟𝑟
𝑏𝑑𝑏

𝑁𝑏 𝐼
𝑥4 −

𝑙𝑟
2

𝐼
(𝑑

𝑎
+ 𝑑𝑏)   

𝑥6 +
𝑙𝑟

𝐼
[𝑘𝑎𝜉𝑎 𝑥5 − 𝑘

𝑏𝜉𝑏 𝑥5 − 𝑘
𝑎𝜉0

𝑎 + 𝑘𝑏𝜉0
𝑏 ]  (28) 

 

 

In order to transform model (21) into a form where the idea 

of different motor roles can be applied, we will use a 

multivariable feedback approach – input-output feedback 

linearization for MIMO systems [12]. This method counteracts 

the nonlinearity and interactions in the model and transforms 

the original two-input-two-output (TITO) system (21) into two 

decoupled single-input-single-output (SISO) systems. By 

adopting this approach, we have to solve similar control 

problems for both joint models. A higher control logic is then 

applied in the form of four SISO controllers (one position and 

one force controller for each of the motors) and a switching 

logic block. The two SISO controllers are active all the time. A 

complete control scheme for a triangular joint with AA drive is 

shown in Fig. 4. The same scheme stands for circular-joint 

model. 

 
Fig. 4. CONTROL SCHEME FOR THE TRIANGULAR-MODEL JOINT WITH AN ELECTRICAL AA DRIVE APPLIED 
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We adopt the same parameters for both motors and 

therefore it is possible to use the same position and force 

controllers: 

 

 

Kp
I  s = Kp

II s =
3e7 𝑠3+1.5e8 𝑠2

𝑠3  + 3.8e2 𝑠2  + 4.75e4 𝑠 + 1.95e6
    (29) 

 

 

𝐾𝑓
𝐼 𝑠 = 𝐾𝑓

𝐼𝐼 𝑠 =
3𝑒3 𝑠 + 1.5𝑒4

𝑠 + 100
               (30) 

 

 

The final simulation results are shown in Fig. 5. The 

position tracks an acceleration-deceleration reference 

(triangular velocity profile). We can see that the trajectory 

tracking is good, with a position error of less than 2 %, and that  

exchanging the motor roles (switching) does not compromise 

the trajectory tracking. 

In Fig. 5 one notes that the reference tension force is not 

kept constant during the motion. The reference tension is 

increased shortly before switching, and it is reduced after it. 

The reason for introducing this adaptive reference force  comes 

from the observation that switching often causes a negative 

overshoot of the tendon force in the transient period after 

switching. 

 

Fig. 5. TRAJECTORY TRACKING AND FORCE TRACKING IN A 

TRIANGULAR-MODEL JOINT 

 

 

Although this overshoot is relatively small in magnitude, 

the small reference value can lead to the pulling force (now 

becoming the following force) falling below zero, i.e. the 

tendon becomes slack. We have proved [10] that slackening 

can be prevented by using a higher value for the reference 

tension force. To avoid an increase in energy consumption, we 

raise the force reference shortly before switching and reduce it 

immediately after the transient oscillations end. 

Let us be more precise and about the influence of the 

reference tension to the system dynamics after switching. Our 

simulations revealed that the switching shock depends strongly 

on the level of the reference tension force, as shown by the 

dotted line in Fig. 6. It can be seen that the minimum shock 

appears when the reference tension force is about 25% of the 

actual pulling force. We also examined the minimum values of 

the tension forces during switching (shown by the dashed line 

in Fig. 6). It can be seen that if we raise the reference tension 

force from 19% to 40% of the actual pulling force, then both 

tension forces will be positive (i.e. both tendons will be taut) all 

the time. Here we introduce the idea of the maximal tension 

margin, which is the value of the reference tension force (as a 

percentage of the actual pulling force) at which the minimum 

value of the tension forces during switching is highest. This 

occurs when the reference tension force is close to 32% of the 

pulling force. Therefore, we can choose the reference tension in 

order to gain either of two advantages: the minimal switching 

shock (with the reference tension set to 25% of the actual 

pulling force) or the maximal tension margin (with the 

reference tension set to 32% of the actual pulling force). 

 
 

Fig. 6. THE TRADE OFF BETWEEN THE MINIMAL SWITCHING SHOCK 

AND THE MAXIMAL STRETCHING MARGIN 

 

CONTROL OF THE MULTI-JOINTED ROBOT BODY 
 

In this Section we consider the complete upper-body model 

(19). We examine the extent to which the single-joint control 

strategy can be applied to this multi-joint system. With regard 

to the joint control the new features are that the joint inertia and 

gravity load now depend on the positions of other joints, and 

that dynamic coupling between joints exists. Simulation 

experiments show that the control derived for isolated joints is 



 8 Copyright © 2011 by ASME 

not satisfactory in the new situation – the nonlinear part of the 

control system suggested in previous Section cannot completely 

counteract the new effects. Thus the control performance is 

compromised. 

The solution we propose for this problem is a robust 

control system design, together with nonlinear compensation 

for the effects of gravity. 

Gravity compensation 

 

The state space model of the joint in (21) does not consider 

gravity. The aim of this Section is to include gravity and to 

define proper compensation. 

In order to take care of the fact that the gravity load of a 

joint depends on the positions of the other joints, we start from 

the multi-joint system and extract the gravity component from 

the dynamic model (15a). The vector 𝐡(𝐐, 𝐐 ) includes the 

static gravity load and the dynamic velocity-dependent effects 

(centrifugal, Coriolis’, and viscous friction): 

 

 

𝐡(𝐐, 𝐐 )  = 𝐡𝑔 𝐐 +  𝐡𝑑(𝐐, 𝐐 )                 (31) 

 

 

To control a particular joint - j, we use a single joint 

notation where the gravity moment is expressed as: 

 

 

𝐺𝑗 = 𝑕𝑔𝑗
(𝐪)                              (32) 

 

 

One of the possible solutions for gravity compensation is 

to determine the modified feedback linearization for the system 

including the gravity component. We therefore modify (21): 

 

 

𝑥6𝑝𝑁𝐸𝑊  𝑥1, 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6 = 𝑥6𝑝 − 
1

𝐼
𝐺𝑗      (33) 

 

 

This changes the corresponding values in the decoupling 

matrix, thus making the control system aware of the influence 

of gravity. 

Uncertain effective joint inertia and dynamic coupling 
between joints 

 

In this Section we show how it is possible to deal with 

variable joint inertia, and with the effects coming from the 

dynamic coupling between joints. The proposed solutions are 

supported by simulation experiments based on the dynamic 

models (19) and (20). 

In contrast to the single-joint systems shown in Fig. 2, 

where the moment of inertia of a segment is constant and 

known, in a multi-joint system the effective joint inertia 

changes and generally depends on the actual position of the 

entire system. Therefore, from the single-joint viewpoint, the 

effective inertia represents an uncertain parameter. On the other 

hand, the coupling between joints represents unmodelled 

dynamics. In order to deal with the uncertainty and unmodelled 

dynamics, we designed a robust control system. Because of the 

applied input-output feedback linearization, the uncertainty in 

the system cannot be described as a function of system 

parameters. Therefore we use the 𝐻∞ loop-shaping method – a 

combination of loop shaping and robust stabilization as 

proposed in [13]. Instead of the existing four SISO controllers 

(the position and force controllers shown in Fig. 4) we propose 

four new SISO controllers - two for position and two for force: 

 

 

Kp
I  s = Kp

II s =
9.15𝑒9 𝑠3+ 2.6𝑒11 𝑠2+ 4.2𝑒12 𝑠 + 2.8𝑒13

𝑠3  + 6.3𝑒3 𝑠2+ 3.9𝑒5 𝑠 + 8.9𝑒7
 (34) 

 

𝐾𝑓
𝐼 𝑠 = 𝐾𝑓

𝐼𝐼 𝑠 =
1.9𝑒4 𝑠 + 7.6𝑒5

𝑠 + 2.7𝑒2 
             (35) 

 

 

We now have a robust control system with gravity 

compensation for a single joint. As mentioned above, we will 

use this single-joint control strategy to control each joint in the 

multi-joint system. In order to test the robustness of the control 

system, we introduce an external disturbance in addition to the 

existing uncertainty and unmodeled dynamics. The simulation 

experiment consists of raising the arm and grasping a 0.5kg 

ball. The trajectory tracking and the force tracking in the 

shoulder joint and the elbow joint (joints 9 and 10 respectively 

in Fig. 1.b) during this grasping experiment are shown in Fig. 7. 

The control system shows acceptable behavior: the influence of 

the external disturbance is reduced after 1s to a position error of 

less than 2%; steady state position errors do not exist; and the 

tendons are taut all the time, even though the reference tension 

force is set to the very low value of 3 N. 

 

CONCLUSION 
 

The paper deals with the complex problem of modeling 

and controlling an anthropomimetic robot. The complexity of 

this system is caused mainly by its drives which involve two 

antagonistically working motors per joint, coupled by tendons 

with passive compliance. These drives make the motor motions 

independent of the joint motions, thus trebling the total number 

of degrees of freedom. This redundancy is successfully 

resolved by separating the roles of the two joint motors, one 

being the puller responsible for the joint motion, and the other 

acting as the follower, keeping the inactive tendon from 

slackening. An adaptive force reference is needed to solve the 

problem of switching roles between motors, and to provide an 

energetically efficient control algorithm. This control study 

started from an isolated joint where the multivariable feedback 

approach – input-output feedback linearization for MIMO 

systems – was successfully applied. With a multi-jointed robot 
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body, the effective joint inertia and the gravity load depend on 

the entire system position, and the dynamic coupling between 

joints strongly disturbs the joint control. By applying robust 

control theory, the disturbances can be compensated, and the 

system works correctly, even in a demanding task such as 

grasping objects. 
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